

High Resolution Electronic Measurements in Nano-Bio Science

The interface between solid & liquid: how to transfer charge through the electrode

Giorgio Ferrari

Milano, June 2025

Outline

- The electrical behavior of the bulk liquid
- Metal liquid interface: double-layer capacitance
- Potential drop across the electrode-liquid interface
- Charge transfer at the interface
- Current-Voltage relation

Electrical current in ionic conductors

lons move in the liquid

Electrons move in the electrodes

electron transfer at the metal/liquid interface to sustain a DC current

The electron transfer is controlled by the potential difference between the liquid and the electrode: what are the voltages in our electrochemical cell?

 Zn^{2+} Zn dissolve \rightarrow V₀ decrea

Zn electrode immersed in a solution with Zn^{2+} ($C_{Zn^{2+}}$):

The equilibrium condition (no corrosion/deposition, no net charge transfer) is reached with a voltage V_0 determined by:

- metal involved
- ions in solution
- solution

Ex.:

• temperature,...

POLITECNICO MILANO 1863

G. Ferrari - Electrical measurements in liquids

deposit

Equilibrium at the interface

 $Zn_{solid} \underset{dissolve}{\Leftrightarrow} Zn^{2+}_{liquid} + 2e^{-}$

Dynamic equilibrium

 Zn^{2+} deposit $\rightarrow V_0$ increases $\rightarrow Zn^{2+}$ repulsed

Zn dissolve \rightarrow V₀ decreases \rightarrow Zn²⁺ attracted

 V_0 is typically not equal to zero.

Electrochemical cell

Voltage V is **not** directly measurable using a voltmeter

A 2nd electrode is required!

$$\mathbf{V} = \mathbf{V}_{Zn} - \mathbf{V}_{AgCl}$$

$$AgCI_{(s)} + e^{-} \leftrightarrows Ag_{(s)} + CI^{-}_{(l)}$$

$$Zn_{(s)} \Leftrightarrow Zn^{2+}_{(l)} + 2e^{-1}$$

Eq. potential of a electrochemical cell

At the equilibrium I=0 (no voltage drop in solution)

Depends on Zn, C_{Zn} Depends on AgCl, C_{Cl} $V = V_{Zn} - V_{AgCl}$

Equilibrium may require V≠0V (battery!)

Aqueous Solutions at 25°C in V vs. SHE (standard hydrogen electrode), 1atm, Cº=1M

1/2F ₂ + H⁺ + e 与 HF	+3.050	$2H^+ + 2e \leftrightarrows H_2$	0.0000
Au⁺ + e ≒ Au	+1.83	Fe²+ + 2e ≒ Fe	-0.44
O_2 + 4H ⁺ + 4e ≒ 2H ₂ O	+1.229	Zn²+ + 2e ≒ Zn	-0.762
Pt²+ + 2e⁻ ≒ Pt	+1.188	$2H_2O + 2e \leftrightarrows H_2 + 2OH^-$	-0.828
$Ag^+ + e^- \leftrightarrows Ag$	+0.799	Na⁺ + e ≒ Na	-2.714
Fe ³⁺ + e ≒ Fe ²⁺	+0.771	Ca⁺⁺ + 2e ≒ Ca	-2.87
$O_2 + 2H_2O + 4e \leftrightarrows 4OH^-$	+0.401	K⁺ + e ≒ K	-2.93
$Fe(CN)^{3-}_{6} + e \leftrightarrows Fe(CN)^{4-}_{6}$	+0.361	Li⁺ + e ≒ Li	-3.04
Cu²+ + 2e ≒ Cu	+0.340		
AgCl + e ≒ Ag + Cl⁻	+0.222		

Aqueous Solutions at 25°C in V vs. SHE (standard hydrogen electrode), 1atm, Cº=1M

1/2F ₂ + H⁺ + e 与 HF	+3.050	$2H^+ + 2e \leftrightarrows H_2$	0.0000
Au⁺ + e ≒ Au	+1.83	Fe²+ + 2e ≒ Fe	-0.44
$O_2 + 4H^+ + 4e \leftrightarrows 2H_2O$	+1.229	Zn²+ + 2e ≒ Zn	-0.762
Pt²+ + 2e⁻ ≒ Pt	+1.188	$2H_2O + 2e \leftrightarrows H_2 + 2OH^-$	-0.828
$Ag^+ + e^- \leftrightarrows Ag$	+0.799	Na⁺ + e ≒ Na	-2.714
Fe ³⁺ + e ≒ Fe ²⁺	+0.771	Ca⁺⁺ + 2e ≒ Ca	-2.87
$O_2 + 2H_2O + 4e \leftrightarrows 4OH^-$	+0.401	K⁺ + e ≒ K	-2.93
$Fe(CN)^{3-}_{6} + e \leftrightarrows Fe(CN)^{4-}_{6}$	+0.361	Li⁺ + e ≒ Li	-3.04
Cu²+ + 2e ≒ Cu	+0.340		
AgCl + e ≒ Ag + Cl⁻	+0.222		

Aqueous Solutions at 25°C in V vs. SHE (standard hydrogen electrode), 1atm, Cº=1M

$1/2F_2 + H^+ + e \leftrightarrows HF$	+3.050	$2H^+ + 2e \leftrightarrows H_2$	0.0000
Au⁺ + e ≒ Au	+1.83	Fe²+ + 2e ≒ Fe	-0.44
$O_2 + 4H^+ + 4e \leftrightarrows 2H_2O$	+1.229	Zn²+ + 2e ≒ Zn	-0.762
$Pt^{2+} + 2e^{-} \leftrightarrows Pt$	+1.188	$2H_2O + 2e \leftrightarrows H_2 + 2OH^-$	-0.828
Ag⁺ + e⁻ ≒ Ag	+0.799	Na⁺ + e ≒ Na	-2.714
Fe ³⁺ + e ≒ Fe ²⁺	+0.771	Ca⁺⁺ + 2e ≒ Ca	-2.87
$O_2 + 2H_2O + 4e \leftrightarrows 4OH^-$	+0.401	K⁺ + e ≒ K	-2.93
$Fe(CN)^{3-}_{6} + e \leftrightarrows Fe(CN)^{4-}_{6}$	+0.361	Li⁺ + e ≒ Li	-3.04
Cu²+ + 2e ≒ Cu	+0.340	V	
AgCl + e ≒ Ag + Cl⁻	+0.222	AgCI	Zn

For the previous case:

V = (-0.762V) - (+0.222V) = -0.984V

Eq. potential: role of the concentration

Ex.: AgCl electrode immersed in a solution with Cl⁻ (C_{Cl^-}): AgCl_(s) + e⁻ \leftrightarrows Ag_(s)+Cl⁻_(l)

 $C_{Cl} > C_{Cl}_{,0}$ (AgCl production) -Q AgCI CI-

equilibrium condition: $V < V_0$

 $C_{Cl} - < C_{Cl} - 0$

(AgCI dissolves)

equilibrium condition: V>V₀

Assuming a Boltzmann dist.: $V = V_0 \frac{kT}{q} \log \left(\frac{C_{Cl^{-}}}{c_{cl^{-},0}}\right)$

Eq. potential: role of the concentration Zn electrode immersed in a solution with Zn^{2+} ($C_{Zn^{2+}}$): Ex.: $Zn_{solid} \Leftrightarrow Zn^{2+}_{liquid} + 2e^{-}$ +Ovoltage V $C_{Zn^{2+}} > C_{Zn^{2+}0}$ equilibrium condition: (Zn deposition) $V > V_0$ -Q voltage V $C_{Zn^{2+}} < C_{Zn^{2+},0}$ equilibrium condition: (Zn dissolves) $V < V_0$

Assuming a Boltzmann dist.:

$$V = V_0 \left(+ \frac{kT}{2q} \right) \log \left(\frac{C_{Zn^{2+}}}{C_{Zn^{2+},0}} \right)$$

Nernst equation

Aqueous Solutions at 25°C in V vs. SHE, 1atm, Cº=1M

	,				
1/2F ₂ + H⁺ + e	+3.050	$2H^+ + 2e \leftrightarrows H_2$	0.0000		
Au⁺ + e ≒ Au	+1.83	Fe²+ + 2e ≒ Fe	-0.44		
O_2 + 4H ⁺ + 4e 与 2H ₂ O	+1.229	Zn²+ + 2e ≒ Zn	-0.762		
Pt²+ + 2e⁻ ≒ Pt	+1.188	$2H_2O + 2e \leftrightarrows H_2 + 2OH^2$	-0.828		
Ag⁺ + e⁻ ≒ Ag	+0.799	Na⁺ + e ≒ Na	-2.714		
Fe ³⁺ + e ≒ Fe ²⁺	+0.771	Ca⁺⁺ + 2e ≒ Ca	-2.87		
$O_2 + 2H_2O + 4e \leftrightarrows 4OH^-$	+0.401	K⁺ + e ≒ K	-2.93		
$Fe(CN)_6^{3-} + e \leftrightarrows Fe(CN)_6^{4-}$	+0.361	Li⁺ + e ≒ Li	-3.04		
Cu²+ + 2e ≒ Cu	+0.340	V			
AgCl + e ≒ Ag + Cl⁻	+0.222	AgCI	Z <mark>n</mark>		
For the previous case:					
$V = -0.762V + \frac{kT}{2q} \ln\left(\frac{C_{Zn^{2+}}}{C^0}\right) - \left[+0.222V - \frac{kT}{q} \ln\left(\frac{C_{Cl^-}}{C^0}\right)\right]$					
POLITECNICO MILANO 1863 G. Ferrari - Electrical measurements in liquids					

Potentiometric sensor

Measure of concentration:

$$V_A = V_0 - \frac{kT}{q} \ln\left(\frac{C_{Cl}}{C^0}\right)$$
$$V_B = V_0 - \frac{kT}{q} \ln\left(\frac{C_{Cl}}{C^0}\right)$$
$$V = V_A - V_B = \frac{kT}{q} \ln\left(\frac{C_{Cl}}{C^0}\right)$$

ion-selective membrane

$$V \propto \ln(C_{Cl}^{B})$$

equilibrium condition (I=0)

Aqueous Solutions at 25°C in V vs. SHE (standard hydrogen electrode), 1atm, C⁰=1M

Reference electrodes

Purpose: provide a stable potential against which other potentials can be reliably measured

Criteria:

- stable in potential (time, temperature)
- chemical reactions at the surface are reversible
- potential shouldn't be altered by passage of small current = not polarizable
- reproducible
- easy fabrication and handling
- convenient for use

Reference electrodes

Aqueous Solutions at 25°C in V vs. SHE, 1atm, C⁰=1M

	•		
$1/2F_2 + H^+ + e \leftrightarrows HF$	+3.050	$2H^+ + 2e \leftrightarrows H_2$	0.0000
Au⁺ + e ≒ Au	+1.83	Fe ²⁺ + 2e ≒ Fe	-0.44
$O_2 + 4H^+ + 4e \leftrightarrows 2H_2O$	+1.229	Zn²+ + 2e ≒ Zn	-0.762
Pt²+ + 2e⁻ ≒ Pt	+1.188	$2H_2O + 2e \leftrightarrows H_2 + 2OH^-$	-0.828
Ag⁺ + e⁻ ≒ Ag	+0.799	Na⁺ + e ≒ Na	-2.714
Fe ³⁺ + e ≒ Fe ²⁺	+0.771	Ca⁺⁺ + 2e ≒ Ca	-2.87
O_2 +2 H_2O + 4e \leftrightarrows 4 OH^-	+0.401	K⁺ + e ≒ K	-2.93
$Fe(CN)^{3-}_{6} + e \leftrightarrows Fe(CN)^{4-}_{6}$	+0.361	Li⁺ + e ≒ Li	-3.04
Cu²+ + 2e ≒ Cu	+0.340	Saturated Calomel Electrode (SCE):	
AgCl + e ≒ Ag + Cl⁻	+0.222		+0.244

Ag wire coated with AgCI(s), immersed in NaCI or KCI solution. It is stable in a solution with a large quantity of Cl⁻ such as the biological fluid (e.g. PBS). **POLITECNICO** MILANO 1863

Out-of-equilibrium condition

 $Zn_{solid} \Leftrightarrow Zn^{2+}_{liquid} + 2e^{-}$

$$\mathsf{AgCl}_{(s)}$$
 + e⁻ \leftrightarrows $\mathsf{Ag}_{(s)}$ +Cl⁻_(I)

$$V_{ext} = V_{AgCl} + R_{sol} \cdot I - V_{Zn}$$

By forcing $V_{ext} >$ equilibrium voltage \rightarrow more Cl⁻ are attracted on the left ($V_{AgCl} \uparrow$) more Zn²⁺ are attracted on the right ($V_{Zn} \downarrow$) \rightarrow chemical equilibrium is broken \rightarrow current

Note: no direct control of the voltage drop at metal-liquid interface

Electrical current in ionic conductors

lons move in the liquid

Electrons move in the electrodes

Chemical reactions with electron transfer at the metal/liquid interfaces

Two main cases:

«consumable» electrode: metal becomes less (more) as a function of time Corrosion / deposition

«nonconsumable»
electrode: reductionoxidation (redox)
reaction of ions or
molecules in liquid

Electron Transfer

Electrode

Solution

lowest unoccupied molecular orbital

highest occupied molecular orbital

atom/ion/molecule in solution

Bard, Electrochemical methods. Fundamentals and applications

Electron Transfer

atom/ion/molecule in solution

Bard, Electrochemical methods. Fundamentals and applications

Electron Transfer

electrode

(b)

Reduction: atom/ion/molecule gains an electron

reaction controlled by the potential drop **across the interface**

Oxidation: atom/ion/molecule loses an electron

Bard, Electrochemical methods. Fundamentals and applications

The Kinetics of Electron Transfer

no competing chemical reactions occur

number of reductions per second $\propto N_{Av}C_0A \rightarrow = k_f N_{Av}C_0A$ A=area of the electrode [cm²] number of O near the electrode [C_0]=[mol/cm³] number of oxidations per second = $k_b N_{Av}C_RA$ Sign convention:

$$i = i_b - i_f = nq \left[k_b N_{Av} A C_R(0) - k_f N_{Av} A C_O(0) \right]$$
POLITECNICO MILANO 1863 x=0 (at the surface) rements in lique

Marcus / Gerischer microscopic model

Electrode

Solution

Tunneling between states in the electrode and those of the ion/molecule

• reorganization energy (λ)

Two different energy levels

electrode

• fluctuations of the solvent molec.

POLITECNICO MILANO 1863

Distributions of energy states

Electron Transfer: Gerischer view

The Thermodynamics of Electron Transfer

Arrhenius theory: an energy barrier has to be surmounted by the reactants before they can be converted to product

Arrhenius equation:

$$k_f = A_f e^{-\frac{\Delta G_f}{kT}}$$
$$k_b = A_b e^{-\frac{\Delta G_b}{kT}}$$

Effect of the voltage on the energy barrier

ectrical measurements in liquids

reaction: k_f=k_b

 $k_f = k_0 e$

Linearization of curves:

 ΔG is prop. to ΔV

 $\Delta G_f = \Delta G_f^0 + nq\Delta \mathbf{V} - (1 - \alpha)nq\Delta \mathbf{V}$

 $\Delta G_h = \Delta G_h^0 - (1 - \alpha) n q \Delta V$

 $k_b = k_0 e^{\frac{(1-\alpha)nq\left(V-V^0'\right)}{kT}}$

 α = transfer coefficient, about 0.5

 $V^{0'}$ = formal potential of the

 k_{0} = standard rate constant

 $-\frac{\alpha nq \left(V-V^{0'}\right)}{kT}$

Electronic current

 $O + ne^{-} \stackrel{k_{f}}{\leftrightarrow} R$

 k_{b} $i = i_{b} - i_{f} = nqN_{Av} A \left[k_{b}C_{R}(0) - k_{f}C_{O}(0) \right]$

A= surface area C(0)= concentration **at the electrode**

$$i = nqN_{Av}Ak_0 \left[C_R(0)e^{(1-\alpha)nq(v-v^{0'})/kT} - C_0(0)e^{-\alpha nq(v-v^{0'})/kT} \right]$$

Butler-Volmer formulation of electrode kinetics

Typical values:

- $\alpha \approx 0.5$
- k_0 : 1-10 cm/s for simple electron transfer
 - 10⁻⁶ cm/s or less for multistep process with molecular rearrangement

Sign convention:

 $V = V_{ext} - R_{sol} \cdot i - V_{2nd \ electrode}$ (see Carminati's lesson on how to better control V using V_{ext})

Marcus / Gerischer model vs Butler-Volmer

Equilibrium condition $i = nqN_{Av}Ak_0 \left[C_R(0)e^{(1-\alpha)nq(V-V^{0'})/kT} - C_0(0)e^{-\alpha nq(V-V^{0'})/kT} \right]$

At equilibrium, no net current flows: $i = i_b - i_f = 0$

$$V_{eq} = V^{0\prime} + \frac{kT}{nq} \ln\left(\frac{C_0}{C_R}\right)$$

Nernst equation

Dynamic equilibrium : $O + ne^- \rightarrow R$, $R - ne^- \rightarrow O$ both processes will occur at equal rates:

$$i_{f} = i_{b} = i_{0} = nqN_{Av}Ak_{0}C_{0}e^{-\alpha nq(V_{eq}-V^{0'})/kT} = nqN_{Av}Ak_{0}C_{0}^{1-\alpha}C_{R}^{\alpha}$$

 i_0 = exchange current

$$i = i_0 \left(e^{(1-\alpha)nq(V-V_{eq})/kT} - e^{-\alpha nq(V-V_{eq})/kT} \right)$$

(it is the same equation!)

Kinetic controlled current

POLITECNICO MILANO 1863

G. Ferrari - Electrical measurements in liquids

An Interfacial Process

For: **O** + **ne**⁻ \leftrightarrow **R** 5 separate events must occur:

- O must be successfully transported from bulk solution (mass transport)
- O must adsorb transiently onto electrode surface (non-faradaic); Chemical reactions preceding or following the electron transfer (e.g., protonation or dimerization or catalytic decomposition) on the electrode surface.
- CT must occur between electrode and O (faradaic)
- R must desorb from electrode surface (non-faradaic)
- R must be transported away (mass transport)

Do not forget electrode pretreatments!

The electron transfer of a redox reaction is a tunneling process

The rate constant is exponentially related to the electrode – molecule distance

≈ nm thick contaminant can drastically reduce the electron transfer rate

Cleanliness is fundamental

Kinetics (and double layer) are controlled by the surface

- \rightarrow electrodes must be carefully cleaned before each experiment:
 - Mechanical polishing (alumina), ultrasonic cleaning, plasma
 - Chemical
 - Sonicate in acetone
 - Soak in HNO₃, aqua regia
 - .
 - Electrochemical
 - Oxidation/reduction cycles in 0.5 M H₂SO₄ (Pt)
 - Oxidation/reduction cycles (-0.2V +1.2V vs Ag/AgCI) in 50mM KOH (Au)
 - •

Oxygen reduction can interfere with the measurement

 \rightarrow removal by purging with an inert gas

Limited electrochemical window

Aqueous Solutions at 25°C in V vs. SHE, 1atm, C⁰=1M

$1/2F_2 + H^+ + e \leftrightarrows HF$	+3.050	2H⁺ + 2e ≒ H ₂	0.0000
Au⁺ + e ≒ Au	+1.83	Fe²+ + 2e ≒ Fe	-0.44
O_2 + 4H ⁺ + 4e ≒ 2H ₂ O	+1.229	Zn²+ + 2e ≒ Zn	-0.762
$Pt^{2+} + 2e^{-} \leftrightarrows Pt$	+1.188	$2H_2O + 2e \leftrightarrows H_2 + 2OH^-$	-0.828
Ag⁺ + e⁻ ≒ Ag	+0.799	water electrolysis	-2.714
Fe ³⁺ + e ≒ Fe ²⁺	+0.771	Ca⁺⁺ + 2e ≒ Ca	-2.87
$O_2 + 2H_2O + 4e \leftrightarrows 4OH^-$	+0.401	K⁺ + e ≒ K	-2.93
oxygen and pH can interfere!		Li⁺ + e ≒ Li	-3.04
Cu²+ + 2e ≒ Cu	+0.340		
AgCl + e ≒ Ag + Cl⁻	+0.222		

Experiment in water are typically limited at ΔV less than 2V (≈ -1V < V < ≈1V vs AgCI)

What about impedance spectra? From the previous lesson WITHOUT charge transfer

Impedance spectrum

Summary

- Equilibrium potential at the electrode-liquid interface
 - I=0 does not imply external voltage = 0V!
 - Equilibrium potential depends on metals involved, ion species and ion concentrations → standard potentials, Nernst equation
 - You never measure the single liquid-metal potential → at least two electrodes → reference electrode (AgCI)
- Electron transfer at the interface is possible:
 - Corrosion / deposition of the metal or redox process at the metal-liquid interface
 - Exponential current-voltage characteristic controlled by V-V⁰ and by concentrations of species O and R <u>at the surface</u>
 - Empiric Butler-Volmer relation is accurate enough in many cases
 - Impedance: charge transfer resistance in parallel to C_{dl}